
WHITE PAPER

Moving OpenVMS applications to Linux, Windows or Unix

Considerations for an OpenVMS Application
Migration and Modernisation Strategy

OpenVMS: time to plan for the future
OpenVMS, originally called VMS (Virtual Memory
System), was first released in support of the
VAX-11/780 in 1977. During the 1980s and early
1990s a VAX/Alpha minicomputer running VMS
was quite popular since the operating system was
well suited to high speed, real-time applications.
Even now, OpenVMS continues to drive numerous
mission-critical business and operational
systems. These reliable, high availability
systems have proven their worth to numerous
organisations, including nuclear power plants
and financial services firms. Quite often, these
organisations have invested money and decades
of time to customise their OpenVMS applications
to meet very specific needs.

In spite of OpenVMS's attributes, more and more
IT executives are realising the limitations of their
legacy applications in the context of their digital
transformation strategies. Legacy languages and
hardware are hard to support, maintaining them
incurs ever-increasing costs, and the software
often doesn't integrate well with modern IT
systems. It's not surprising that today nearly half
of IT executives view application modernisation as
one of their top five priorities.

These issues serve as a prompt for IT leaders
to closely examine the functionality of their
OpenVMS systems and to seek the right
modernisation strategy for their business. This
paper looks at the available options for migration
and the benefits that might be achieved through
modernisation.

Factors driving decisions
There are five key factors to consider when
assessing options for an OpenVMS application
migration and modernisation strategy. How each
application ranks against these factors will help
determine the direction to be taken and the
target end state.

Application Criticality
Perhaps the most important factor is how
mission-critical the application is to the business.
For example, does the application provide
custom or unique business functionality that
cannot easily be replaced? The answer to this
question will help guide a decision on whether
the application should be retained, replaced,
rewritten or even retired. If the OpenVMS
application has been customised to meet the
needs of the business and is mission-critical, a
migration and modernisation initiative may be the
best strategy.

2 |

OpenVMS Application Migration & Modernisation
OpenVMS: time to plan for the future
OpenVMS, originally called VMS (Virtual Memory
System), was first released in support of the
VAX-11/780 in 1977. During the 1980s and early
1990s a VAX/Alpha minicomputer running VMS
was quite popular since the operating system was
well suited to high speed, real-time applications.
Even now, OpenVMS continues to drive numerous
mission-critical business and operational
systems. These reliable, high availability
systems have proven their worth to numerous
organisations, including nuclear power plants
and financial services firms. Quite often, these
organisations have invested money and decades
of time to customise their OpenVMS applications
to meet very specific needs.

In spite of OpenVMS's attributes, more and more
IT executives are realising the limitations of their
legacy applications in the context of their digital
transformation strategies. Legacy languages and
hardware are hard to support, maintaining them
incurs ever-increasing costs, and the software
often doesn't integrate well with modern IT
systems. It's not surprising that today nearly half
of IT executives view application modernisation as
one of their top five priorities.

These issues serve as a prompt for IT leaders
to closely examine the functionality of their
OpenVMS systems and to seek the right
modernisation strategy for their business. This
paper looks at the available options for migration
and the benefits that might be achieved through
modernisation.

Factors driving decisions
There are five key factors to consider when
assessing options for an OpenVMS application
migration and modernisation strategy. How each
application ranks against these factors will help
determine the direction to be taken and the
target end state.

Application Criticality
Perhaps the most important factor is how
mission-critical the application is to the business.
For example, does the application provide
custom or unique business functionality that
cannot easily be replaced? The answer to this
question will help guide a decision on whether
the application should be retained, replaced,
rewritten or even retired. If the OpenVMS
application has been customised to meet the
needs of the business and is mission-critical, a
migration and modernisation initiative may be the
best strategy.

SUSTAINABILITY

IT STRATEGY

APPLICATION CRITICALITY

SECURITY &

COMPLIANCE

INTEROPERABILITY

OpenVMS Application Migration & Modernisation
Sustainability
There are fewer experienced OpenVMS resources
available in the marketplace than ever before.
This not only creates a potential risk, but impacts
decisions about what end state should be
targeted in any migration and modernisation
initiative. It is important to analyse the existing
OpenVMS skills that are available to support
and operate not only the current environment,
but also to what extent these resources will be
accessible in the future. In addition to the human
resources, the technical aspects of new releases
must be considered.

Interoperability
The extent to which an OpenVMS application
supports external interfaces and adheres
to the standards within an organisation for
interoperability architectures should be
considered when looking at the desired end state
for a migration or modernisation project.

In many cases, OpenVMS applications and data
have become “islands” in an organisation’s IT
landscape. Certainly, integration of external
applications with OpenVMS applications is
feasible; however, these mechanisms are
becoming exceptions in an enterprise integration
strategy. Building integration points and
maintaining them can become expensive and
prevent organisations from achieving a standard
architecture for application interoperability.

Security and Compliance
Security and compliance requirements represent
another potential risk point in current OpenVMS
applications. As organisations institute company-
wide security standards and IT governance
controls, OpenVMS applications often fall
into a security and governance “silo.” While
usually secure within their own right, OpenVMS
applications lack the ability to integrate into a
broader security and control framework within a
modern organisation.

IT Strategy
Lastly, OpenVMS can no longer be considered
a strategic IT platform for an organisation.
Companies are seeking to standardise their
data centers around virtualised hardware and
software stacks that can be deployed rapidly
at very low cost (“computing pods”), that are
capable of being scaled up or down as IT capacity
requirements change. OpenVMS applications
do not lend themselves to this strategy. As
organisations begin to deploy private and/

or public cloud architectures, the growing gulf
between OpenVMS and this future IT direction
becomes a liability.

Examining these five factors helps an IT
organisation assess the relevance and reliance
associated with OpenVMS applications. The good
news is these factors can be addressed, and risks
mitigated, with a well-designed migration and
modernisation plan.

Re-host, re-architect or both?
There are many solutions which can be employed
when moving OpenVMS applications and data
to a new platform. These solutions range from
“re-hosting” to a more invasive “re-architecting” of
the applications. Between these two extremes it
is often beneficial to consider a hybrid approach:
re-hosting portions of the application that
can be easily moved and re-architecting those
components where a new end state technology
or functionality is desired.

Re-hosting
Re-hosting (sometimes referred to as “lift and
shift”) describes a migration where minimal
changes are made to the underlying technology
of the application and database. The benefit
of re-hosting is that it minimises changes to
the application and ensures the preservation
of functionality, business logic and business
processes after the migration. Because of this,
the testing required to verify the migration is
minimised, and the cost/time for end-user re-
training is eliminated.

An example of re-hosting would be recompiling
an application written in Fortran (which might
use DCL for the batch processes and a Record
Management Services (RMS) file system) into a
new Linux or Windows environment using an
Open Systems DCL shell to support the DCL
command files and RMS data within an Open
Systems indexed file system.

The viability of re-hosting depends not only upon
having access to a native language compiler in
the new environment, but also a framework
that supports the proprietary aspects of the
OpenVMS world. In the above example, support
for DCL and RMS in the Windows or Linux target
platform would be required.

Fortunately these Compatibility Frameworks are
readily available in the market. They introduce
a software license component in the new

3

4 |

OpenVMS Application Migration & Modernisation
environment, but the reduction in overall migration
cost more than pays for the licensing fees.

In addition to the Compatibility Framework
accelerating the speed of a migration, most re-
hosting solutions include tools to automate the
adaptation of code and data often required for
use with the target compiler or operating system.
Continuing with the above example, in moving
VMS Fortran to an Open Systems Fortran, there
will likely be some differences in the syntax in use
compared to the syntax supported by the new
compiler. The proper re-hosting solution provides
automated tools to adapt the code so that it will
work with the new compiler. This speeds up the
process and delivers predictable and consistent
results compared to trying to perform this work
manually. In addition to the speed of migration, a
proven migration toolset decreases the cost and
risk by reducing the number of human resources
and amount of testing required.

Therefore re-hosting typically provides a faster,
lower cost and less risky option for OpenVMS
application and data migrations. Rehosting is not
moving to an emulated hardware solution. This
approach typically uses a software/hardware
emulation of VAX or Alpha sitting on top of either
bare metal or Windows or Linux. In all cases it
still uses OpenVMS as the operating system and
therefore does not address the inherent reasons
to move away from OpenVMS.

Re-architecting
Re-hosting is not always the best solution. In
some instances the OpenVMS technologies
simply cannot be supported in the target
environment. Or, it may be desirable to change
an underlying technology to a more modern end
state, or to add/change functionality.

There are varying levels of automation tools
depending upon the re-architecting required.
For example, when using DECforms, there is
not a re-hosting, no-change option for moving
the user interface to Windows or Linux – so the
user interface will need to be re-architected. If
the goal is to preserve the basic look and feel
of DECforms, there are tools that will migrate
the forms and associated escape routines in a
relatively automated manner. However, if the goal
is to convert DECforms to a browser or graphical
client, this will require some amount of manual
re-engineering.

A common re-architecting requirement is to
transform the programming language in the
OpenVMS application to a more modern code
base. An example would be transforming Pascal
to C, or Fortran to C#. There are commercial tools
available to automate this process. However,
it should be noted that when moving from a
procedural language (e.g. Fortran or COBOL)
there are varying degrees of how much the
conversion is able to achieve a true Object
Oriented (OO) end state. Typically, the more
a “pure” OO code base is desired, the less
automated the conversion will be – increasing
testing time and project costs.

Hybrid solutions
Given the status of most OpenVMS applications,
many organisations adopt a hybrid approach: re-
hosting components that can be easily supported
in the new environment, and re-architecting
aspects for which a re-hosting solution is not
readily available, or where functional/technology
modernisation delivers added benefits to the
business.

Breaking down the problem

OS layer
Linux or Windows?
Migrating OpenVMS applications can be seen
as an opportunity to move to the standard
infrastructure platform of the organisation. The
options to move to Unix, Linux or Windows are
all available and technically viable. The choice of
which platform best suits the organisation may
be driven by your available internal skill sets
and software standards, such as your preferred
development environment and target database,
and, of course, cost.

If applications are being re-hosted using a
Compatibility Framework, then re-training of
OpenVMS programmers and operators can be
minimised by choosing to preserve some of
the technical interfaces used in the OpenVMS
environment.

However, re-hosting should always provide a
native implementation in the target environment
in order to benefit from the economic and
governance advantages of system standardisation.

Data layer
Migrating OpenVMS data provides an opportunity
to move to the organisation’s standard database

OpenVMS Application Migration & Modernisation
technology. The desire may be to move the
OpenVMS proprietary RMS data to a Relational
Database Management System (RDBMS). However,
Compatibility Frameworks offer Open Systems
native implementations of RMS, whether indexed
or sequential files. Using a native indexed filing
system to replace RMS might be an attractive
alternative that reduces costs and minimises
the need to add performance overhead when
compared to moving the data to a RDBMS.

RMS
RMS is probably the most common file
management system used on OpenVMS. It is an
integral part of OpenVMS system software and its
procedures run in executive mode. RMS supports
the following four types of record level access:

 > Sequential Access

 > Relative Record Number Access

 > Record File Address Access

 > Indexed Access

And, the following record types:

 > Fixed length

 > Variable length

 > Variable record length with fixed length control
blocks

Stream files (records separated by termination
characters)

 > STREAM: Records terminated by CRLF

 > STREAM_CR: Records terminated by CR

 > STREAM_LF: Records terminated by LF

If the goal is to migrate RMS files along with the
application programs that use them, there are
really only two viable migration options:

 > Move the RMS data to a Compatibility
Framework that provides equivalent RMS file
handler functionality in the target operating
environment.

 > Re-architect the data into a native relational
database such as Oracle or Microsoft SQL Server.

The benefit of the first approach is that it
maintains the RMS I/O statements in the migrated
application, so there is no need to re-engineer

the I/O statements and the program logic will
remain unchanged.

A potential shortcoming is that the data may be
difficult to access from other applications and
industry standard query tools. However, there are
now ODBC and JDBC gateway products available
for migrated RMS data that provide relational
database type querying and integration solutions.

The benefit of the second approach can
be realised when integrating the migrated
application and data with other applications and
moving all computing to a common database
standard. Re-architecting RMS data to a RDBMS
is entirely possible. The key issue is minimising
the amount of application code re-engineering
required to access the relational database (as
opposed to the indexed, record level RMS files).
A comprehensive migration vendor toolset should
provide mechanisms for migrating RMS to a
RDBMS and managing the impact this creates on
the application code.

Depending on the application’s programming
language, vendor solutions may generate
intermediate I/O libraries that provide static
SQL calls and map data I/O back to a call level
interface, replacing the RMS I/O statements in
the programs. Other options are more like “black
box” solutions, providing optimised dynamic SQL
I/O and again mapping to calls replacing the RMS
statements in the program. Lastly, programs can
be re-architected to use embedded SQL. This can
be a large undertaking, but will provide a “native”
implementation which may be more sustainable
in the future. The embedded SQL option will also
depend on the availability of SQL pre-compiler
support for the application’s programming
language.

If the desire is to migrate RMS data to another
application’s database for archive purposes only,
and the impact on the associated application’s
code is not a concern, there are data movement/
modernisation tools available to extract and load
the RMS data into another database structure.
These tools may need access to application code
or copy books in order to help determine the RMS
data definitions for the extract.

Oracle Rdb
Oracle Rdb is a RDBMS specifically for OpenVMS.
Rdb was originally created by Digital Equipment

5

6 |

OpenVMS Application Migration & Modernisation
Company (DEC) in 1984 and was intended to be
used for data storage and retrieval by high-level
languages. In 1994, DEC sold the Rdb division
to Oracle Corporation where it was rebranded
Oracle Rdb. It currently runs on OpenVMS for
VAX, Alpha and HP Integrity Servers.

While there is no corresponding version of Oracle
Rdb on Unix, Linux or Windows, the obvious
target end state for an Rdb migration is another
relational database (e.g. Oracle or Microsoft SQL
Server). While there are some changes needed to
schema definitions, the conversion and migration
are relatively straightforward given the right
vendor tools.

The majority of the Rdb SQL syntax is fully
supported by other RDBMS without change.
However, there are a small number of changes to
the SQL, including stored procedures, that will be
required in order to get it to execute on the target
RDBMS. Automated tools are valuable when
making these changes, in order to save time/
effort and ensure accuracy.

There are two ways to combine SQL with
OpenVMS host language programs. You can
create a separate module for SQL language
statements (SQLMODs) or you can enter them
directly in the host language program and use
a SQL precompiler. Changes will be required
to these interface methods in the associated
program code to use APIs available on the target
platform. Rdb access commands can be different
from standard ANSI-embedded SQL statements
and the existing code structures will require
adaptation in order to compile and function with
the new RDBMS. Vendor migration tools should
help with this process.

Other databases and data sources
In addition to RMS and Rdb, there are other
databases in use on the OpenVMS operating
system (e.g. Oracle and Ingres). There are also
proprietary legacy database systems (e.g.
CODASYL DBMS and Adabas). The migration
options for these less common databases depend
very much on whether they are supported
in the target operating system environment.
The process for migrating any proprietary,
hierarchical, or network structured databases to
a RDBMS is similar – but usually more complex –
than converting RMS to a relational structure.

Obviously, if Oracle on OpenVMS is being
used, then migrating to Oracle on a new target
platform will probably be the easiest migration
option. This should not limit thinking, however;
there is no reason why a migration to a different
target relational database that is currently
being employed in an organisation cannot be
accomplished.

Automated tools for such database conversions
may be limited, but an experienced vendor should
be able to understand the required conversion
and may be able to develop automated tools.

Application program layer
The overall OpenVMS modernisation/migration
project – whether it involves re-hosting, re-
architecting, or a hybrid combination – is
primarily driven by the requirements of the
application program layer. In particular, the driver
is what programming language the applications
are currently written in and what programming
language is desired as the end state for the
future. There is a wide variety of mostly 3GL
languages supported on OpenVMS, the most
common being:

HP COBOL
HP COBOL is a common programming language
found on OpenVMS for business applications
and is one of the easiest to re-host to Unix, Linux
or Windows. There is a range of Open Systems
COBOL compilers that provide a “landing site”
for applications written in HP COBOL. However,
moving HP COBOL to an Open Systems COBOL
involves more than simple recompiling, as there
will be differences in supported syntax and less
tolerance for non-compliant syntax.

In addition, OpenVMS COBOL code will be
dependent on facilities of the OpenVMS
environment. Aspects such as file and screen
I/O will be alien to a new compiler and any
OpenVMS system service calls will not be natively
supported. These issues can be resolved with
a Compatibility Framework that supports these
functions in the new operating system and
avoids changes to the application program code.
Alternatively, these intrinsic functions can be re-
engineered to functions supported by the target
COBOL compiler. However, this re-engineering will
take longer, adding to the cost, and be more risky.

OpenVMS Application Migration & Modernisation
Whichever approach is decided upon, vendor tools
can provide a high level of automation for the code
changes required for the new COBOL compiler.

HP Fortran
HP Fortran is used in a significant number of
manufacturing, process control and banking
applications running on OpenVMS. There are
Fortran compilers available on Unix, Linux and
Windows, so re-hosting to a Fortran end state is
feasible. The migration process and requirements
are similar to migrating COBOL.

As with COBOL, adaptation of the code may be
required to comply with the new compiler. A
Compatibility Framework will avoid the need to
re-engineer programs for file and screen I/O, as
well as other OpenVMS intrinsics.

One option for migrating a Fortran code base
is to convert it to a programming language
that offers similar capabilities. Most Fortran
conversions target C or C++ as the end state.

This provides the benefit of re-architecting the
application into a form that can be supported
by more commonly available resources. These
projects typically require extensive regression
testing when compared to a re-hosting to the
same programming language using an Open
Systems compiler.

Whether re-hosting to a Fortran end state or
migrating to a new language, vendor tools can
provide a high level of automation for any code
changes required.

HP Pascal
Unlike COBOL or Fortran, there is not the same
support for Pascal in modern operating systems,
so applications written in Pascal almost always
require transformation to another programming
language. Conversions to C, C++, Microsoft C#,
and Java are all feasible. However, depending on
the nature of your code base and the application
functionality required, certain of these end state
options make more technical sense than others.

Transformation Tools

REVIEW / REPLACE

DATA MIGRATION

APPLICATION LOGIC

OPERATION ENVIRONMENT

INTERFACES

PLATFORM

Advanced Compatibility Framework

7

8 |

OpenVMS Application Migration & Modernisation
Pascal provides better program structure controls
than many procedural coding environments,
but Pascal applications are not truly Object
Oriented (OO). Converting procedural code to OO
languages usually requires a trade-off between
how pure an OO end state is desired versus the
speed and cost of conversion. In some cases, it is
just not realistic to use automated conversion and
code generation tools to take a procedural 3GL
code base to a “true” OO end state. However, if
there is a willingness to compromise, automated
conversion of Pascal to a modern programming
language, particularly to C or C++, is quite feasible.

HP Basic (Basic Plus, Basic Plus 2)
HP Basic is a reasonably common language in the
OpenVMS community. It is used in commercial,
manufacturing and banking applications. Although
there are Open Systems BASIC compilers and
interpreters, they do not offer a high degree
of syntax compatibility with HP Basic. HP Basic
applications are therefore candidates for
transformation to a more modern programming
language. Specific tools are available to convert
Basic to C++, Microsoft C# and Java. There are also
general tools which can be tailored to convert HP
Basic to other target programming languages.

Other OpenVMS programming languages
In additional to the languages listed above,
OpenVMS supports other programming
languages, such as Ada. In general, the same key
factors discussed above will apply when assessing
the migration options for such languages.

The first consideration is whether there are
suitable compilers for the current language that,
with the help of a Compatibility Framework,
create a pathway to migrate with minimal changes
to the code. The second consideration is how
much ongoing maintenance and development
work will be required for the application in the
future. If a considerable amount of development
is anticipated to keep the application current
with business requirements, then transforming
the application code to a modern development
environment is probably the best approach.

The more the application code is changed during
the migration process, the more regression
testing will be required before “going live”
and increased risk will be introduced into the
migration project. This applies even if automation
tools are being utilised during the re-hosting or
re-architecting process.

Operation environment
DCL
Digital Command Language (DCL) is used to
control processes in the OpenVMS environment.
The migration of DCL command files is similar to
migrating application program code. There are
two choices available for the migration of DCL:

 > Keep the DCL virtually as is and run it in an
Open Systems DCL “shell” provided by a
Compatibility Framework.

 > Transform the DCL to a native Linux or
Windows scripting language.

In practice, most users choose to keep DCL and
run it in a vendor-provided shell on the target
system. This has the merits of speed, low cost
and low risk – avoiding the need for significant
regression testing and re-training associated with
transforming the code to native target script.
Good DCL shells are capable of switching to native
scripting languages as existing DCL modules are
enhanced or modified. This allows the user to
move to a native environment over time, rather
than in one major transformation. DCL shells
are typically more concise than native scripting
solutions, while transforming DCL to native script
will invariably result in generating multiple lines of
script code for each line of DCL code.

User Interface (UI) layer
How the migration and modernisation of an
OpenVMS application’s UI is handled depends on
the mechanism currently in use for developing
and maintaining the screens and the tolerance for
cost/risk involved in a migration. Generally, the
options are:

 > Maintain the existing UI through the use of a
Compatibility Framework.

 > Transform the UI to an alternative technology
using automated tools.

 > Re-architect the UI into a modern look and feel
using modern technologies.

FMS
HP FMS (Forms Management System) is a common
UI development and management environment
found on OpenVMS. Usually running on “green
screen” VT100 terminals or emulators, FMS
provides an asynchronous character-based
interface for online OpenVMS applications.

OpenVMS Application Migration & Modernisation

As well as providing an API to develop forms
for a UI, FMS allows programmers to embed
subroutines into forms for field validation and
processing purposes. Compatibility Frameworks
can provide a means of preserving the FMS API
in a Unix, Linux or Windows environment. This
avoids re-engineering the UI components of
an application, reducing the time and cost of a
migration and the need to retrain users after the
application is migrated.

SMG
SMG is an OpenVMS screen management library.
Like FMS it provides support for a character
based VT user interface. SMG is similar to the
ncurses (new curses) library supported under
flavors of UNIX. SMG provides the means to
manage screen I/O independent of terminal
hardware. However, unlike FMS, SMG doesn’t use
a Form definition for the screen I/O and doesn’t
provide a means of embedding logic into the
screen layout.

Most OpenVMS migration frameworks on Unix
offer an SMG emulation. Providing the same green
screen character-based interface. Migrating SMG
screens to Windows will require the use of a VT100
terminal emulator and terminal server capability to
reproduce the green screen look and feel.

Because SMG uses inline commands in the
application programs and doesn’t offer a layer
of abstraction from the application programs, it
is much harder to modernise SMG screens to a
native graphical user interface (GUI). Any attempt
to do this will inevitably require significant
restructuring and change to the application code.
However, some degree of a GUI can be provided
for SMG screens using screen scraping solutions.

DECforms
HP DECforms is a software product for the
development and deployment of a forms-
based UI for interactive applications running on
OpenVMS. Not only does DECforms give the look
and feel of a forms interface, it also supplies a
robust set of dialog management and validation
functions to control the UI at application runtime.

IFDL (Independent Form Description Language)
is used to define the DECforms used by an
application. Most migrations transform IFDL
code into an alternative language with its own UI
capabilities. For example, one common approach
is to transform the IFDL into COBOL routines that
provide a similar UI. This is a sensible approach
if the core application code is written in COBOL.
Alternatives exist to convert IFDL into other 3GL
languages such as Fortran.

Alternatively, DECforms can be transformed into
a modern UI such as ASP, JSP or HTML. However,
the existing API may not always be preserved and
changes to the application code may be required.
This type of transformation will almost always
require some retraining of users.

ACMS
ACMS is a transaction processing (TP) monitor that
runs on OpenVMS. It is intended for businesses
that require high performance, security, data
integrity and both centralised and distributed
processing. Providing similar TP capabilities
for migrated applications can be an important
issue for organisations using this product. While
ACMS provides several mechanisms for external
Windows and Unix applications to communicate
back to it , there is no ACMS product that runs
on Open Systems. Migrating an ACMS application
requires replacement of its TP functionality

9

OpenVMS Application Migration & Modernisation
with another engine. Oracle’s Tuxedo has been
commonly used to provide a TP environment for
migrated ACMS applications.

Another route is to re-architect the DECforms
interface and re-engineer the TP to a client-server
or web architecture. This effectively removes the
need for a pure TP function and replaces it with
the combination of application and database
functionality, or an application server to ensure
transaction integrity.

Oracle Forms
Oracle Forms represents the other significant UI
technology found in OpenVMS. Because it is also
found in other legacy application environments,
there are several vendors who specialise in
providing migration solutions for Oracle Forms
applications. These solutions, in conjunction with
specific OpenVMS application migration offerings
from specialised vendors, can provide a complete
migration solution for OpenVMS Oracle Forms
applications.

Third party products
When considering a migration, it is important
to consider any third party products used in
conjunction with applications on OpenVMS. Third
party products can be divided into two groups: 1)
those that interact with applications at run-time
(e.g. Attunity data access solutions) and 2) those
that provide operator and programmer utilities
(e.g. HP’s Datatrieve). The reason for making this
distinction is that it is possible to employ different
strategies based upon which group each product
falls into.

As a starting point, an inventory of all third
party products should be created – categorising
them according to how they are used, and then
mapping them to target solutions that meet
the organisation’s functional needs in the new
environment.

If a third party product is providing run-time
functionality to an application (e.g. a sort utility),
then the impact of changing the API when moving
to an Open Systems replacement product should
be considered. The simplest solution is to try to
map to an Open Systems version of the same
product whenever this is an option.

Using automated tools to adapt the code
components to work with a new third party
product will reduce risk and cost compared to
making these changes manually.

The need for third party utilities that have been
frequently used by programmers or operators
may disappear due to capabilities found in
the new development or operating system
environment.

Experienced OpenVMS migration consultants have
already built most of the “from-to” mapping for
the more commonly found third party products.
Partnering with such a vendor at the planning
stages in a project can save time and effort.

OpenVMS clustering
OpenVMS was one of the first operating systems
to support clustered environments. Originally
called VAXcluster, and now known as VMScluster,
the capability was introduced in 1984. Clustering
was initially used to expand the scalability and
load balancing of an application. As hardware
performance improved, clustering today is used
more to provide high availability and rollover
capabilities.

Many organisations still use VMScluster today.
This does not prevent migration to another
platform and operating system. There are
clustering solutions for Linux, Unix and Windows
environments (e.g. Red Hat Cluster Suite, VMWare
and Veritas Cluster Server). With improvements
in computing power and virtualisation of servers,
clustering for performance and load balancing
purposes is less of a requirement, and clustering
in modern systems is mostly designed to improve
application availability. Products such as HP
Serviceguard, Sun Cluster and Microsoft Cluster
Server are good examples of high availability
clustering solutions.

Recognising why clustering is used with
OpenVMS applications helps to determine if
it will be required in the migration target end
state. For example, if clustering is being done
for performance purposes, it may make sense
to design a non-clustered, virtualised server
environment for the target end state. However, if
high availability is a critical requirement, then an
add-on cluster support product may be ideal for
use with the target operating system.

10 |

OpenVMS Application Migration & Modernisation
Other interfaces
Another important consideration is the external
interfaces supported in the OpenVMS environment.
There may be TCP/IP connections into the
system, or external file transfer tasks providing
external data that are processed by the OpenVMS
application. Similar interfaces to the application
must be planned for in the target environment.
Where possible, the new interfaces should avoid the
need to modify the external applications in order to
work with the migrated application.

Significant overhead can be added if customers
or business partners also need to revise their
applications due to changing interfaces after a
migration.

Mitigating risk
So far, this paper has focused on the specifics
of migrating each component making up an
OpenVMS application set: the core of the
migration project. However, there are other major
factors in a migration – discovery, planning and
testing – which are critical to success.

Discovery
Discovery is a critical step in any successful
migration in that it determines the composition,
size and complexity of the current OpenVMS
environment. Making an inventory of application
components creates a template upon which
migration solutions can be applied to each piece.

Knowing the size of each component provides
metrics that are vital to accurately estimating
the scope and cost of the migration project. In
addition to knowing the quantities, understanding
the interactions and complexities also provides
valuable scoping information.

Application Understanding (AU) tools are available
to automate a large portion of this phase of the
project. The best migration solution vendors offer
these AU tools as part of their solution set.

Once the application component inventory is in
place, work can begin on analysing the source
code to discover any potential migration issues.
AU discovery tools frequently automate this
process as well.

Planning
With a complete picture of the application set
that will be migrated, the next step is to plan
the migration process. The key in this phase is
to ensure that the migration addresses every
aspect of the application. Planning the migration
completely is the single most important aspect
for risk mitigation.

Testing
Testing is also critical. Most migrations require
some modification to code and data structures.
In re-architecting projects, entire code bases can
be transformed into new languages. Therefore,
every migration should include the classic testing

 Migration Project
Pyramid Test Plan

11

12 | Optional Series Title

OpenVMS Application Migration & Modernisation

methods: regression testing, systems testing,
user acceptance testing and, in some cases,
parallel testing.

The application migration testing pyramid
approach
A testing plan should be created based on the
strategy being adopted. If using a Compatibility
Framework and automated migration tools, which
preserve much of the logic flow of the application,
it should be possible to create a “pyramid testing”
plan. This recognises that the migration is not the
same as a pure development project.

Thanks to the predictable outcome of automated
tools, pyramid testing validates the migration
process rather than testing each program that
is migrated (i.e. if the migration works for a
representative subset of programs, it can be
assumed that it works for all programs). Pyramid
testing still requires a reasonably comprehensive
approach, but prioritises groups into different
levels based on program criticality.

Delivering benefits
OpenVMS migration and modernisation projects
have great potential to deliver benefits to a
business while future-proofing applications –
avoiding the need to undertake migrations again at
a later date. In general, the benefits can be seen as:

Lowering the Total Cost of Ownership (TCO)
While it may not be obvious on the surface, the
reality is the TCO of OpenVMS applications is 50-

70% higher than modern application platforms.
Labor costs are typically higher as skilled resources
become increasingly scarce. The cost of application
maintenance and development is higher when the
costs of building interoperability with other systems
and the lack of economies of scale compared to
modern platforms are factored in. With higher
costs and higher risks, migrating and modernising
OpenVMS applications should dramatically lower
the TCO associated with their functionality.

Avoiding catastrophes
Most, if not all, IT organisations have special
disaster recovery provisions for their OpenVMS
environment. As hardware platforms cease to
be supported, surviving catastrophic hardware
failures will become increasingly more difficult
and expensive to address. After the stockpile
of spare parts for Alpha and Integrity platforms
has dwindled, the next step may be shopping for
parts on eBay or similar sources. Clearly, this is
an unacceptable level of operational risk for most
organisations.

Sustainability for the future
The outcome of a well-planned and executed
migration and modernisation initiative is to move
OpenVMS applications to a maintainable, low
risk, and low cost end state that is viable for the
future. A well executed plan may have multiple
steps that meet short-term migration needs but
also deliver long-term benefits.

More information
w oneadvanced.com/us
t 770 933 1965
e hi@oneadvanced.com

3200 Windy Hill Road, Suite 230 West, Atlanta, GA 30339

OneAdvanced, Inc. is a wholly owned subsidiary of Advanced Computer Software Group Limited. Advanced recognises the
trademarks of other companies and their respective products in this document.

Application modernisation is a “team sport”
Most IT organisations have limited experience
with complex legacy application migration
and modernisations. Few organisations have
spare resources with specialised skills sitting
around who can dedicate themselves to such
a project and still keep up with day-to-day
responsibilities. Rarely are the specialised tools
and methodologies to deliver a highly automated
migration available in-house. For these reasons,
most organisations seek specialist vendors to
assist – and sometimes to take full responsibility –
for delivering a successful project.

It would be simplistic to think that the vendor is
only providing software tools and technology.
Migration and modernisation projects are
complex. A successful vendor must demonstrate
that is has a proven and repeatable methodology
– in addition to the right skills, sufficient resources
and specialised technologies to ensure success.

In Summary
The goal of this paper was to look at the
available options for migrating and modernising
applications currently running in the OpenVMS
environment – and to highlight the benefits that
can be achieved through modernisation. Factors
in deciding upon the right course of action were
discussed, and certain details regarding the
migration of specific components were highlighted.

Just as no two companies are identical, the
options, challenges, and requirements of
undertaking a migration and modernisation
project demand a customised solution that
leverages an organisation’s existing resources while
optimising both technical and business results.

If there is only one key takeaway from this
discussion, it should be that migrations are
complex. They are most successful in their
deployment when a methodical, fact-based
approach is utilised to assess the functional
value and technical complexity of the current
OpenVMS environment to arrive at the right
strategic direction for the organisation.
Specialised tools are available to automate large
portions of this assessment and experienced
migration vendors exist to assist in planning and
executing the project. The result will be a project
that avoids major operational risks and delivers
business benefits with a considerable return on
investment.

OpenVMS Application Migration & Modernisation

